c = 9.493 (3) Å; $\beta = 100.50$ (2)°; $\rho_0 = 1.79$ (2), $\rho_c = 1.802$ g cm^{-3} with Z = 4. A total of 6546 independent nonzero reflections were measured on a Philips PW1100 diffractometer and 4874 reflections with $I > 3\sigma(I)$ were used in subsequent structure solution and least-squares refinement. Final blockdiagonal matrix least-squares refinements with anisotropic thermal parameters for all nonhydrogen atoms converged to $R_{\rm F} = 0.062$ and $R_{\rm wF} = 0.091$.

The structure of 1 consists of discrete complex cations $[Cu^{II}_{2} \subset (L)]^{4+}$ (Figure 2), perchlorate anions, and water molecules.

The two copper(11) ions are located *inside*⁸ the molecular cavity of the macrotricyclic ligand (L). Each cation is bound to two nitrogens, two sulfurs, and one oxygen atom. The data (distances, angles, and dihedral angles) show that the complex cation has a virtual center of symmetry, a feature which implies an *identical role* for the two copper(II) cations. Their coordination polyhedron is a somewhat distorted tetragonal pyramid in which the metal ion lies ~ 0.34 Å out of the basal N₂S₂ plane^{9,10} toward the axial oxygen atom. The four Cu-N and four Cu-S bond distances range from 2.020 (5) to 2.058 (5) and 2.306 (1) to 2.332 (1) Å, respectively. The values of the Cu(1)-O(4) and Cu(2)-O(16) bond lengths are 2.291 (5) and 2.283 (4) Å. The Cu(1)...Cu(2) separation of 5.621 (1) and the O(4)...O(16) distance of 4.211 (6) Å indicate that (i) there is little if any direct interaction between the two copper centers, as shown also by the EPR spectral data⁴ ($g_{\perp} = 2.045 g_{\parallel} =$ 2.132 and $A_{\perp} = 8 \text{ mK}$; (ii) there is a *large cavity* between the two copper cations which should allow insertion of a diatomic substrate. There is no evidence that such a process occurs; however, when adding KO₂ to $[Cu^{II}_{2} \subset (L)]^{4+}$ or dioxygen to $[Cu^{l_2} \subset (L)]^{2+}$, similar electronic spectra are obtained.⁴ Among the possible binding modes of $O_2^{n-}(n = 1, 2)$ to two metal centers¹¹ (μ -dioxygen bridging), the transplanar C_{2h} and nonplanar C_2 modes fit particularly well for the complex cation present in 1 since these modes necessarily impose a Cu--Cu distance varying between 4.0 and 5.2 Å owing to the Cu-O-O and dihedral Cu-O-O-Cu angles. In $[Cu^{II}_{2} \subset (L)]^{4+}$ the N₂S₂ planes are almost parallel, the angle between their normals being 1.34°; this feature should lead to a value near 180° for the Cu-O-O-Cu torsion angle. The planar cis C_{2v} bonding mode of O_2 as proposed for hemocyanin^{11a} probably necessitates the synthesis of a dissymptric ligand with $R_1 \neq R_2$ (Figure 1b).

References and Notes

- (1) For example double porphyrins, H. Ogoshi, H. Sugimoto, and Z. Yoshida, Tetrahedron Lett., 169 (1977); face to face porphyrins, J. P. Collman, C. M. Eliott, T. R. Halbert, and B. S. Tovrog, *Proc. Natl. Acad. Sci. U.S.A.*, 74, 18 (1977), and C. K. Chang, *J. Chem. Soc., Chem. Commun.*, 800 (1977); mixed porphyrin-macrocyclic system, crowned porphyrin, C. K. Chang,
- J. Am. Chem. Soc., **99**, 2819 (1977). $[Cu_2^2 \subset C_{24}H_{40}N_2O_2S_4]^{2+}$ gives with CO and O₂ reversible adducts: J. E. Bulkowski, P. L. Burk, M. F. Ludmann, and J. A. Osborn, *J. Chem. Soc.*, (2)Chem. Commun., 498 (1977).
- (3) For example, haemocyanin has two copper(II) ions held in close proximity in their active site. See R. Lontie and L. Vanquickenborne in "Metal lons in Biological Systems", H. Siegel, Ed., Marcel Dekker, New York, N.Y., 1974; G. L. Eichhorn, "Inorganic Biochemistry", Elsevier, New York, N.Y., 1973; A. S. Brill in "Molecular Biology, Biochemistry, and Biophysics", Vol. 26, Exchange Variation Metal 2009, Biochemistry, and Biophysics", Vol. 26, Springer Verlag, New York, N.Y., 1977
- (4) A. H. Alberts, R. Annunziata, and J. M. Lehn, J. Am. Chem. Soc., 99, 8502 (1977)
- J. S. Thompson, T. J. Marks, and J. A. Ibers, Proc. Natl. Acad. Sci. U.S.A., (5)74, 3114 (1977); T. E. Jones, D. B. Rorabacher, and L. A. Ochrymowycz, J. Am. Chem. Soc., 97, 7485 (1975); H. J. Schugar, C. Ou, J. A . Thich, J. A. Potenza, R. A. Lalancette, and W. Furey, *Ibid.*, **98**, 3047 (1976); R. D. Bereman, F. T. Wang, J. Najdzionek, and D. M. Braitsch, *ibid.*, **98**, 7266 (1976).
- (6) A. R. Amundsen, J. Whelan, and B. Bosnich, J. Am. Chem. Soc., 99, 6730 (1977); V. M. Miskowski, J. A. Thich, R. Solomon, and H. J. Schugar, Ibid., 98, 8344 (1976).
- M. C. Styka, R. C. Smierciak, E. L. Blinn, R. E. De Simone, and J. V. Pas-(7)sariello, Inorg. Chem., 17, 82 (1978).
- (8) The crystal and molecular structures of two complexes of nontransition metal ions with macrotricyclic ligands have been described: silver [3]-cryptate, $[Ag_2 \subset (C_{24}H_{48}N_4O_6)]Ag(NO_3)_3$, R. Wiest and R. Weiss, J.

Chem. Soc., Chem. Commun., 678 (1973); sodium [3]-cryptate, [Na2⊂(C32H64N4O10)]I2, J. Fischer, M. Mellinger, and R. Weiss, Inorg. Chim. Acta. 21, 259 (1977).

- (9) The deviations of the N₂S₂ atoms from their mean plane are <0.10 Å.
- (a) T. B. Fisher and R. Bau, *Inorg. Chem.*, **17**, 27 (1978).
 (11) (a) T. B. Freedman, J. S. Loehr, and T. M. Loehr, *J. Am. Chem. Soc.*, **98**, 2809 (1976); (b) L. Vaska, Acc. Chem. Res., 9, 175 (1976), and references therein
- (12) Laboratoire de Cristallochimie et de Chimie Structurale associé au C.N.R.S. (E.R.A. 08).

Rémy Louis, Yvette Agnus, Raymond Weiss*

Institut Le Bel, ¹² Université Louis Pasteur 67070 Strasbourg Cedex, France Received December 27, 1977

Highly Reduced Organometallics. 3.1 Tetrasodium Tetracarbonylmetalates(4-) of Chromium, Molybdenum, and Tungsten, Na₄M(CO)₄

Sir:

Highly reduced organometallics which have properties consistent with those expected for noncluster binary carbonyl trianions, i.e., $V(CO)_5^{3-}$, $^2M(CO)_4^{3-}$ (M = Mn and Re), 3 and $M'(CO)_3^{3-}$ (M' = Co, Rh, and Ir), 1 have been recently prepared by reduction of carbonylmetalate monoanions, $M(CO)_x^{1-}$, in liquid ammonia and/or hexamethylphosphoramide (HMPA). We now report on the syntheses and properties of more highly reduced species, tetrasodium tetracarbonylmetalates(4-) of chromium, molybdenum, and tungsten. These are the first examples of noncluster binary metal carbonyl tetraanions⁴ and the only compounds presently containing molybdenum and tungsten in a formal -4 oxidation state.⁵ A new synthetic approach, which may be of general importance as a route to other families of "superreduced" organometallics, has been used in this synthesis of $Na_4M(CO)_4$: the reduction of substituted organometallics.

Reduction of a noncluster metal complex containing both good and poor π -acceptor ligands often causes preferential loss of weaker or non- π acceptors.⁶ Trivial examples where this generalization holds include the reduction of metal carbonyl halides.⁷ More interesting and less well-understood examples involve reduction of phosphine or cyclopentadienyl substituted metal carbonyls.8 We find that reduction of diamine substituted group 6 carbonyls, i.e., $(TMEDA)M(CO)_4$,⁹ by sodium in liquid ammonia¹⁰ provides essentially quantitative yields of analytically pure $Na_4M(CO)_4$ (1)¹¹ according to the equation

$(TMEDA)M(CO)_4 + 4Na \rightarrow Na_4M(CO)_4 + TMEDA$

The presence of the readily displaceable TMEDA ligand, which is not attacked by sodium in liquid ammonia, and the preformed $M(CO)_4$ unit appear to be of crucial importance in this synthesis.12,13

Infrared spectra of 1 (Figure 1) show bands at exceedingly low energies for terminal carbonyl groups. These values are almost 200 cm^{-1} lower than those reported for $Na_3M'(CO)_4$ $(M' = Mn \text{ and } Re)^3$ which suggests that these insoluble "tetraanions" are most reasonably formulated as $[M(CONa)_4]_x$ where extensive and strong sodium ion-carbonyl oxygen interactions may be responsible for the very low $\nu(CO)$ values.^{14,15} Differences in the spectra of Na₄W(CO)₄ and other $Na_4M(CO)_4$ shown in Figure 1 are not understood; however, they do not appear to be due to carbonyl containing impurities which form on partial oxidation of $Na_4M(CO)_4$. Other preparations of $Na_4Mo(CO)_4$ have provided infrared spectra nearly identical with those of $Na_4W(CO)_4$.

Treatment of slurries of 1 in tetrahydrofuran (THF) with 2 equiv of Ph₃SnCl results in an immediate reaction and formation of new anions which, on the basis of infrared data,

Figure 1. Silicone fluid mull spectra of $Na_4M(CO)_4$ (approximate positions of bands in cm⁻¹).

¹H NMR spectra (see Table I), and elemental analyses, are formulated as *cis*- $(Ph_3Sn)_2M(CO)_4^{2-}$. These may be isolated as moderately air-sensitive and white crystalline $[Et_4N]_2$ - $[(Ph_3Sn)_2M(CO)_4]$ (2).¹⁶ From the tungsten reaction a 17-20% yield of pale yellow, air-stable, and crystalline $[Et_4N][(Ph_3Sn)_3W(CO)_4]$ (3c), containing a seven-coordinate tungsten, is also obtained.¹⁷ Conversion of 2 to 3 for Cr, Mo, and W is easily effected by treatment of 2 with 1 equiv of Ph_3SnCl in THF.¹⁸ This reaction sequence is depicted by the following scheme:

$$Na_{4}M(CO)_{4} \xrightarrow{Ph_{3}SnCI} Na_{2}[(Ph_{3}Sn)_{2}M(CO)_{4}]$$
$$\xrightarrow{Et_{4}NBr} [Et_{4}N]_{2}[(Ph_{3}Sn)_{2}M(CO)_{4}]$$

$$[Et_4N]_2[(Ph_3Sn)_2M(CO)_4] + Ph_3SnCl$$

$$\stackrel{CH_3CN}{\longleftarrow} [Et_4N][(Ph_3Sn)_3M(CO)_4] + Et_4N^+Cl^-$$

The pale yellow and crystalline chromium derivative (3a) is particularly unusual since it appears to be the first example of a thermally stable seven-coordinate chromium carbonyl species containing only monodentate ligands.¹⁹ Owing to the unusual nature of **3a**, we have examined its chemistry in some detail and find that one triphenyltin group is easily lost under a variety of conditions, e.g., by reduction with triphenylstannyl lithium or heterolytic cleavage with hexamethylphosphora-mide;²⁰ i.e., eq 1.

$$(Ph_{3}Sn)_{2}Cr(CO)_{4}^{2-} + Ph_{6}Sn_{2}$$

$$(Ph_{3}Sn)_{3}Cr(CO)_{4}^{4-}$$

$$(1)$$

$$(1)$$

 $Ph_3Sn(HMPA)_n^+ + (Ph_3Sn)_2Cr(CO)_4^{2^+}$

Initial studies on the chemical reactivity patterns of $Na_4M(CO)_4$ show that these "superreduced" species are useful precursors to a variety of new organometallic compounds. Studies to further characterize the reactivity patterns of these new materials, especially in regard to their reactions with organic substrates, are in progress and will be reported in due course.

Acknowledgments. We thank the National Science Foundation (CHE76-13341) and the donors of the Petroleum Research Fund, administered by the American Chemical Society,

Table I. Infrared and ¹H NMR Data for $[Et_4N]_2[(Ph_3Sn)_2-M(CO)_4]$ (2) and $[Et_4N][(Ph_3Sn)_3M(CO)_4]$ (3)

Anion (M)	$\nu(C=0), cm^{-1} a$	NMR, $\delta^{b,c}$
2a (Cr)	1918 (m), 1822 (vs), 1782 (s)	6.91-7.05 (m, 9 H), meta and para
2b (Mo)	1948 (m), 1844 (vs), 1791 (s)	7.43-7.54 (m, 6 H), ortho 6.89-7.05 (m, 9 H), meta and para
2 c (W)	1947 (m), 1838 (vs), 1790 (s)	7.42-7.58 (m, 6 H), ortho 6.90-7.07 (m, 9 H), meta and para
3a (Cr)	1956 (m), 1904 (s), 1864 (vs)	7.38-7.56 (m, 6 H), ortho 6.96-7.66 (m, 45 H) ^d
3b (Mo)	1999 (m), 1897 (vs), 1832 (w)	7.02–7.67 (m, 45 H) ^d
3c (W)	1997 (m), 1894 (vs), 1828 (w)	7.02-7.68 (m, 45 H) ^d

^{*a*} In acetonitrile. ^{*b*} At 60 MHz recorded in acetonitrile- d_3 . ^{*c*} Spectra of Et₄N⁺ were nearly independent of anion: ~1.1 (t of t, 12 H, -CH₃), ~3.0 (q, 8 H, -CH₂-). ^{*d*} Unresolved multiplet of aromatic protons of Ph₃Sn groups.

for support of this research. J.E.E. is grateful to the E. I. du Pont de Nemours and Co. for a Young Faculty Award and to Professor Ken Klabunde for helpful suggestions in the preparation of this manuscript.

References and Notes

- (1) Part 2: J. E. Ellis, P. T. Barger, and M. L. Winzenburg, J. Chem. Soc., Chem. Commun., 686 (1977).
- 2) J. E. Ellis and M. C. Palazzotto, J. Am. Chem. Soc., 98, 8264 (1976).
- (3) J. E. Ellis and R. A. Faltynek, *J. Chem. Soc., Chem. Commun.*, 966 (1975).
- (4) Cluster binary metal carbonyl tetranions, M₆(CO)₁₄⁴⁻, are known for M = Co and Rh: P. Chini, G. Langoni, and V. G. Albano, *Adv. Organomet. Chem.*, 14, 285 (1975).
- (5) These anions are isoelectronic with tetranitrosylchromium(4–): S. K. Satija and B. I. Swanson, *Inorg. Syn.*, **16**, 1 (1976). More highly charged anions such as Cr(bipy)₃⁶⁻ (bipy = $\alpha_1 \alpha'$ -bipyridyl) have been reported (W. R. McWhinnie and J. D. Miller, *Adv. Inorg. Chem. Radiochem.*, **12**, 135 (1969)), but metal oxidation state assignments for bipy and related complexes are often ambiguous or meaningless (F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry", 3rd ed, Wiley, New York, N.Y., 1972, p 723).
- (6) Interesting exceptions to this generalization include the following reductions: $C_5H_5V(CO)_4 + 2Na \rightarrow Na_2[C_5H_5V(CO)_3] + CO (J. E. Ellis, R. A. Faltynek, and S. G. Hentges, J. Organomet. Chem.,$ **120** $, 389 (1976)); Cel₁H₆Cr(CO)_3 + 2Na \rightarrow Na_2[C_6H₆Cr(CO)_3] (R. D. Riecke, J. S. Arney, W. E. Rich, B. R. Willeford, and B. S. Poliner, J. Am. Chem. Soc.,$ **97** $, 5951 (1975)); 2C_5H_5Co(CO)_2 + Na \rightarrow Na[C_6H_5Co(CO)]_2 + other species (C. S. Ilenda, N. E. Schore, and R. G. Bergman,$ *ibid.*,**98** $, 255 (1976)); bipyCr(CO)_4 + Na \rightarrow Na[bipyCr(CO)_4] (Y. Kaizu and H. Kobayashi,$ *Bull. Chem. Soc. Jpn.*,**45**, 470 (1972)).
- (7) Examples: Br₂Fe(CO)₄ + (Na/Hg) → Fe(CO)₄^{2−} + 2Br[−] (W. Hieber and J. Muschi, *Chem. Ber.*, **98**, 3931 (1965)); ClCr(CO)₅[−] + (Na–HMPA) → Cr(CO)₅^{2−} + Cl[−] (J. E. Ellis and G. P. Hagen, *J. Am. Chem. Soc.*, **96**, 7825 (1974)). More examples appear in J. E. Ellis, *J. Organomet. Chem.*, **86**, 1 (1975).
- (1975). (8) Examples: (Ph₃P)₂V(CO)₄ + (Na/Hg) \rightarrow V(CO)₅PPh₃⁻⁺ + PPh₃ + ? (R. P. M. Werner, *Z. Naturforsch., B*, **16**, 477 (1961)); Ph₃PCr(CO)₅ + (Na/Hg) \rightarrow Cr(CO)₅²⁻⁺ + PPh₃ (J. E. Ellis and G. L. Rochfort, unpublished results); C₅H₅Co(CO)PPh₃ + (Na/Hg, CO) \rightarrow Co(CO)₄⁻⁺ + C₅H₅⁻⁻ + other products (N. E. Schore, C. S. Ilenda, and R. G. Bergman, *J. Am. Chem. Soc.*, **99**, 1781 (1977)).
- (9) TMEDA = N, N, N', N'-tetramethylethylenediamine.
- (1) In a typical preparation, ammonia (40 mL), free of oxygen and moisture, was condensed into a vessel containing (TMEDA)Cr(CO)₄ (0.56 g, 2.0 mmol) and sodium metal (0.185 g, 8.0 mg-atoms) cooled to -50 °C. Within 30 min of stirring (glass-covered magnetic stir bar) a finely divided pale yellow solid began to precipitate from the blue solution. After 3 h at -50 °C, the blue color was completely discharged providing a pyrophoric solid which was isolated by evaporation of the liquid ammonia, followed by drying at room temperature under high vacuum. Without further purification a quantitative yield of homogeneous pale yellow powder was obtained. This material satisfactorily analyzed for Na₄Cr(CO)₄. Anal. Calcd for C₄CrNa₄O₄: C, 18.77; H, 0.0; Cr, 20.31; Na, 35.92. Found (A. Bernhardt): C, 18.53 H. 0.24; Cr, 20.42; Na, 35.56.
- (11) Similar procedures provided high yields of analytically pure orange yellow Na₄Mo(CO)₄ (Anal. Calcd for C₄MoNa₄O₄: C, 16.02; H, 0.0; Mo, 31.99; Na, 30.66. Found: C, 15.75, H, 0.08; Mo, 32.23; Na, 31.03.) and orange Na₄W(CO)₄ (Anal. Calcd for C₄Na₄O₄W: C, 12.39; H, 0.0; Na, 23.71; W, 47.40. Found: C, 12.48; H, 0.12; Na, 23.47; W, 47.25.)
 (12) Numerous other approaches to Na₄M(CO)₄ have been tried with little or
- (12) Numerous other approaches to Na₄M(CO)₄ have been tried with little or no success. For example, reduction of norbornadiene-Cr(CO)₄ by sodium in liquid ammonia provided a deep brown solid which was shown to contain

only small amounts of Na4Cr(CO)4 by its low conversion (2-3% yield) to 2a (see Table I). The reduction of coordinated or uncoordinated norbornatione by sodium in liquid ammonia may be responsible for this unfavorable results. ^{13a} Also, Na₂M(CO)₅^{13b} (M = Cr or W) is not converted to $Na_4M(CO)_4$ either because it is stable to reduction (for M = Cr or W in HMPA or for M = Cr in NH_3) or decomposes (for M = W in NH_3) to an uncharacterized brown powder which contains no Na4W(CO)4 but rapidly converts Ph₃SnCl to hexaphenylditin. Reduction of (TMEDA)M(CO)₄ by sodium metal in HMPA at room temperature provides Na2M(CO)5 as the only carbonyl containing products. Reductions using other electropositive metals will be described in a subsequent paper.

- (13) (a) B. R. Ortiz de Montellano, B. A. Loving, T. C. Shields, and P. D. Gardner, J. Am. Chem. Soc., 89, 3365 (1967); (b) J. E. Ellis and G. P. Hagen, Inorg. Chem., 16, 1357 (1977)
- (14) Reductive coupling of coordinated carbon monoxide¹⁵ to yield a π -acetylenediolate dianion complex (see below) could also explain the abnormally low $\nu(CO)$ values observed in these species. An analogous ar-bisaminoacetylene complex has recently been prepared from the re-ductive coupling of coordinated isocyanides (C. T. Lam, P. Corfield, and S. J. Lippard, J. Am. Chem. Soc., 99, 617 (1977)). We have no chemical evidence for reductive coupling in our compounds; i.e., all of the reactions of the "tetraanions" give rise to derivatives containing terminal carbonyls. However, as depicted, it is possible that reductive coupling of CO can be reversed on addition of an electrophile to yield the observed derivatives

- (15) Free carbon monoxide reacts with sodium in liquid ammonia to form disodium acetylenediolate and other products (V. M. Sinclair, R. A. Davies
- and J. L. Drummond, *Chem. Soc. Spec. Publ.*, No. 22, 260 (1967)).
 (16) Yields are moderate to low (~30%, 2a; ~1%, 2b; ~50%, 2c). Hexaphenylditin also forms in these reactions. Substantially better yields $(\sim 60-70\%)$ of 2 are obtained from the reaction of (TMEDA)M(CO)₄ (M = Cr, Mo, and W) with 2 equiv of Ph₃SnLi in THF followed by metathesis with Et₄NBr in ethanol.
- (17) Anal. Calcd for C₅₆H₇₀CrN₂O₄Sn₂ (2a): C, 59.81; H, 6.27; N, 2.49; Sn, 21.11. Found: C, 59.78; H, 6.17; N, 2.43; Sn, 21.17. Anal. Calcd for C₅₆H₇₀Mo-N2O4Sn2 (2b): C, 57.56; H, 6.04; N, 2.40. Found: C, 57.47; H, 6.13; N, 2.28. Anal. Calcd for C56H70N2O4Sn2W (2c): C, 53.54; H, 5.62; N, 2.23. Found: C, 53.20; H, 5.56; N, 2.68. The total yield of derivatives (2c and 3c) from $Na_4W(CO)_4$ is \sim 70%.
- (18) Yields of analytically pure samples in these reactions are only moderate (~35% for 3a-c) owing in part to incomplete conversion of 2 to 3. However, 3 is easily separated from 2 by virtue of its moderate solubility in THF, in which **2** is insoluble. Anal. Calcd for C₆₆H₆₅CrNO₄Sn₃ (**3**a): Ć, 58.97; H, 4.87; N, 1.04; Sn, 26.49. Found: C, 59.25; H, 5.05; N, 0.85; Sn, 26.32. H, 4.87 N, 1.04; Sn, 20.49; Found: C, 59.25; H, 5.05; N, 0.85; Sn, 26.32; Anal. Calcd for $C_{66}H_{65}MoNO_4Sn_3$ (3b): C, 57.10; H, 4.72; N, 1.01; Sn, 25.65; Found: C, 56.86; H, 4.36; N, 1.77; Sn, 25.34. Anal. Calcd for $C_{66}H_{65}NO_4SN_3W$ (3c): C, 53.70; H, 4.44; N, 0.95; Sn, 24.12. Found: C, 53.37; H, 4.18; N, 1.25; Sn, 24.39.
- (19) Numerous examples of seven-coordinate molybdenum and tungsten carbonyl complexes exist (e.g., M(CO)₄I₃⁻⁻) for which there are no chromium analogues (see M. W. Anker, R. Colton, and I. B. Tomkins, Rev. Pure Appl. Chem., 18, 23 (1968)). However, seven-coordinate chromium carbonyl complexes with polydentate ligands are known (e.g., [Cr(CO)2(Diars)2Br]Br, J. Lewis, R. S. Nyholm, and M. H. B. Stiddard, J. Chem. Soc., 3009 (1964)).
- (20) Triphenylstannyllithium reacts with [Et₄N] [(Ph₃Sn)₃Cr(CO)₄] (3a) to provide essentially quantitative yields of $(Ph_3Sn)_2Cr(CO)_4^{2-}$ and hexaphenylditin. Infrared studies show that HMPA causes complete heterolytic cleavage of one Sn–Cr bobd in **3**a to yield $(Ph_3Sn)_2Cr(CO)_4^{2-}$. Analogous heterolytic cleavages of tin-metal bonds by polar solvents have been known for several years (e.g., see A. Davison and J. E. Ellis, J. Organomet. Chem., 36, 113 (1972)); however, generally the degree of solvation of the tin cation is unknown
- (21) NSF Undergraduate Research Participant, summer 1977.

John E. Ellis,* Charles P. Parnell,²¹ Gary P. Hagen Department of Chemistry, University of Minnesota Minneapolis, Minnesota 55455 Received January 30, 1978

MNDO Parameters for Third Period Elements

Sir:

The MINDO/3 method¹ suffers from well-known problems¹ and, in the case of compounds containing heteroatoms and its use for third period elements (Si. P, S, Cl), is further restricted by the availability of parameters for them only for limited combinations of them with other elements^{2,3} and without inclusion of 3d AOs. Furthermore, recent work⁴ has

Opti- mized	Si	Р	S	Cl
Uss. eV	-40.568292	-56.143360	-75.239152	-100.227166
$U_{\rm pp}, eV$	-28.089187	-42.851080	-57.832013	-77.378667
ζs, au	1.435306	2.108720	2.613591	3.784645
ζ _p , au	1.435306	1.785810	2.034393	2.036263
$\beta_{\rm s}, \beta_{\rm p},$	-4.256218	-6.791600	-11.142231	-14.262320
ev				
$\alpha, Å^{-1}$	2.1961078	2.4152800	2.4916445	2.542201

Table II. MNDO Parameters for Third Row Elements

Derived	Si	Р	s	Cl
$H_{\rm f}^{\rm A}$, kcal	108.39	75.57	66.40	28.99
E_{el}^A , eV	-90.53496 -	152.95996	-235.45636	-353.137667
$D_1, Å$	0.744999	0.536030	0.435589	0.263889
D_2 , Å	0.616918	0.495834	0.435248	0.434848
$\rho_0, Å$	0.733128	0.622778	0.558953	0.478996
$\rho_1, Å$	0.768732	0.541911	0.449254	0.328218
ρ ₂ , Å	0.664346	0.531356	0.468321	0.435983

uncovered a discrepancy between the published² results for compounds of phosphorus and those calculated using the published¹ parameters which are also included in our MINDO/3 computer program, and similar, though smaller discrepancies have now been found for silicon and sulfur.⁵ Apparently an earlier set of parameters was inadvertently inserted in our final computer program and hence in the published list.¹ The results for chlorine³ are, however, correct.⁵

In the meantime we have parameterized the MNDO method⁶ for these elements (Si, P, S, Cl) and the results are, as expected, better than the published² MINDO/3 ones. MNDO has the further advantage of using only atomic parameters; so calculations can be carried out for any combinations of these elements with those already parameterized (H,⁷ Be⁸, B,⁹ C,⁷ N,⁷ O,⁷ F¹⁰). As yet, 3d AOs have not been included in MNDO; so the parameters refer only to compounds of these elements in their characteristic valence states (Si^{IV}, P^{III}, S^{II}, Cl^I). The calculated heats of formation for compounds of, e.g., P^V and S^{VI} are too positive by very large amounts.

This work will be repeated in full in due course but unexpected circumstances have delayed its publication. In view of the unexpected problems with MINDO/3 and the very wide demand for some procedure applicable in particular to compounds of P, we are therefore reporting the parameters for Si, P, S, and Cl here (Tables I and II). Computer programs for MNDO are available from Q.C.P.E., both ours and one written in a more general version of FORTRAN by Dr. W. Thiel.

References and Notes

- (1) R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, 1285 (1975)(2) M. J. S. Dewar, D. H. Lo, and C. A. Ramsden, J. Am. Chem. Soc., 97, 1311
- (1975)
- (3) R. C. Bingham, M. J. S. Dewar, and D. H. Lo, J. Am. Chem. Soc., 97, 1307 (1975).
- (4) G. Frenking, H. Goetz, and F. Marschner, J. Am. Chem. Soc., in press.
- (4) G. H. Bornard, G. P. Ford, unpublished work.
 (5) M. J. S. Dewar and G. P. Ford, unpublished work.
 (6) M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4899 (1977).
 (7) M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc., 99, 4907 (1977).
- (8) M. J. S. Dewar and H. S. Rzepa, *J. Am. Chem. Soc.*, **100**, 777 (1978).
- M. J. S. Dewar and M. L. McKee, J. Am. Chem. Soc., 99, 5231 (1977).
- (10) M. J. S. Dewar and H. S. Rzepa, J. Am. Chem. Soc., 100, 58 (1978).

Michael J. S. Dewar,* Michael L. McKee, Henry S. Rzepa

Department of Chemistry The University of Texas at Austin Austin, Texas 78712 Received February 27, 1978